옵티컬 플로우는 컴퓨터비전을 공부하다 보면 꼭 나오는 주제입니다. 원리와 수식은 위키피디아, 블로그, openCV API에 많이 나와있으니 글 하단에
참고사이트로 대신하고, 이 포스팅에서는 제가 헷갈렸던 이야기와 몇 가지 개념에 대해 써보겠습니다.
옵티컬 플로우 또는 광류라고 하는 이 알고리즘은 간단히 말하면 차영상의 진화버전이라고 할 수 있겠습니다. 이전 프레임과 현재 프레임의 차이에 관심을 둔다는 점에서요.
저는 옵티컬 플로우를 처음에 아래 그림처럼 접했었습니다. 제 선배가 옵티컬 플로우를 사용해서 논문을 쓰는걸 봤는데 아래 그림과 같은 방식으로 사용하시더라구요.
이전 프레임에서 강인해 보이는(다음 프레임에서도 추출될 만한) 특징점 추출 후 현재 프레임에서 같은 특징점을 찾아 얼만큼 위치변화가 있었는지 보는 방식입니다.
여기서 짚고 넘어가야할 점은, 특징점의 분포가 움직이는 물체 부분에 밀집되어 있다는 점입니다. 위 그림처럼 카메라가 고정되어있고 자동차가 움직인다면 특징점은 차도에 많이 생기겠죠.
이렇다 보니 옵티컬 플로우를 객체 위치 인식 및 추적용으로 생각하시는 분들이 많은 것 같아요.(실제로 그렇게 사용하기도 합니다.)
하지만 제 생각에는 옵티컬 플로우는 물체가 어떻게 움직이고 있는지 판단할 때 가장 좋은 알고리즘이 아닐까 싶습니다.
여기서 잠깐, Lucas-Kanade(LK), Horn-Schunk(HS)라는 키워드에 대해 짚고 넘어가겠습니다.
이것도 많이 헤매게 된 부분인데요, AR.Drone 논문에서 옵티컬 플로우를 LK와 HS를 모두 사용했다고 나오길래, 옵티컬 플로우는 크게 두 가지 방법이 있는 줄 알았습니다. openCV에는 아예 대놓고 calcOpticalFlowPyrLK()라는 함수가 있고 API를 봐도 루카스 카나데 방법을 사용한다고 써놨습니다. 근데 HS방법은 아무리 검색을 해봐도 안나와서 이상타 싶었는데 HS는 옵티컬 플로우를 어떻게 해석하는지에 중점을 두고 연구한 사람들이더라구요. (아래 참고사이트에 책 내용이 잘 나와 있다는 사이트를 참고하세요~)
위 자동차 그림처럼 특징점의 위치가 고르지 않은 상황에서는 HS방법을 쓰기 힘들 것 같네요.
이렇게 되어있는 경우 잘 들어맞을 것 같습니다.
객체와 배경이 함께 움직인다면 배경 부분까지 옵티컬 플로우가 만들어질 겁니다. 배경이 움직인다는건 다시 말해 카메라가 움직인다는 걸로도 볼 수 있기 때문에 배경의 속도는 카메라의 속도로 이어집니다.
이런 생각에 착안해 화면 전체의 옵티컬 플로우를 구하기 위해 찾아보았습니다.
아래의 제가 찍은 옵티컬플로우 동영상과 같이, 윙윙이에도 이런 방식을 적용했습니다.
openCV로 구현했구요, 프레임을 100개의 정사각형 블럭으로 나누고 블럭 중앙을 특징점으로 정한다음에 다음 프레임에서 특징점을 찾는 방식입니다.
노이즈가 심한거는 옵티컬 플로우 함수의 파라미터를 조정해서 개선했구요, 말도 안되게 튀는 노이즈는 if문으로 제거했습니다.
원래는 RANSAC을 이용해서 outlier 필터링을 하려고 했는데 각 벡터들을 평균해보니 꽤 쓸만한 값이 나와서 일단 그대로 사용하는 중입니다.